- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Berger, Paul (1)
-
Cook, Andrew (1)
-
Grīnberga, Līga (1)
-
Ignatane, Liga (1)
-
Keskinen, Jari (1)
-
Kučinskis, Gints (1)
-
Lupo, Donald (1)
-
Mäntysalo, Matti (1)
-
Pourkheirollah, Hamed (1)
-
Tewari, Amit (1)
-
Vindt, Steffen Thrane (1)
-
Vitto, Remuel Isaac (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Atomic layer deposition (ALD) has been gaining in popularity as a powerful deposition technique and have been shown to be a promising interfacial engineering method to boost the electrochemical performance of supercapacitors, bridging the gap in energy density. In that regard, we developed an ALD technique to deposit titanium dioxide (TiO2) nanofilms onto porous activated carbon (AC) electrodes. This study focused on the critical aspects of the ALD process that were still unexplored by previous relevant works, including the effects of precursor pulse duration and film thickness on the complex porous structures of AC. In particular, these comprehensive investigations pave the way towards uniform distribution and excellent conformity of the TiO2 nanofilms across the AC surface. Moreover, the deposited films were found to be amorphous and resulted in increased amounts of oxygen-containing surface functional groups. The enhanced electrochemical behavior from the TiO2 nanofilms were found to be optimal at 60 ALD cycles with an estimated film thickness of 2.3 nm. The assembled supercapacitor device coated with this ALD technique exhibited higher specific capacitance compared to the bare AC. The key findings of this work provide the foundation of an effective strategy using ALD for fabricating new electrode materials for high-performance supercapacitors.more » « less
An official website of the United States government
